Bonnie Bassler odkryła, że bakterie "rozmawiają" ze sobą używając języka chemicznego, który pozwala im koordynować obronę i wyprowadzać atak. Odkrycie to ma szokujące następstwa dla medycyny, przemysłu -- i naszego rozumienia siebie.
Translated into Polish by Jakub Bruszewski
Reviewed by Marcin Kasiak
Aby wyświetlić tłumaczenie wykładu w dowolnym języku, naciśnij przycisk "View subtitles" i wybierz język (na czerwono przy przycisku odtwarzania)
About Bonnie Bassler
Bonnie Bassler studies how bacteria can communicate with one another, through chemical signals, to act as a unit. Her work could pave the way for new, more potent medicine. Full bio and more links http://www.ted.com/speakers/bonnie_bassler.html
Bakterie są najstarszymi organizmami Ziemi. Są tu od miliardów lat i są jednokomórkowymi mikroskopijnymi organizmami. Są jednokomórkowcami ze szczególną właściwością, posiadają tylko jedną cząstkę DNA Mają niewiele genów i informacji genetycznej żeby kodować wszystkie funkcje, które wykonują. Bakterie prowadzą następujący tryb życia: konsumują wartości odżywcze ze środowiska podwajają swój rozmiar, dzielą się na dwie połówki i w ten sposób jedna bakteria staje się dwiema, i tak w kółko Po prostu rosną i dzielą się, rosną i dzielą się -- więc trochę nudny tryb życia Ale ja chciałabym zilustrować waszą niesamowitą interakcję z tymi stworzeniami.
Wiem, że uważacie się za ludzi, a oto jak ja was, mniej więcej, postrzegam. Ten człowiek ma reprezentować przeciętną ludzką istotę, a wszystkie kółka w tym człowieku to wszystkie komórki, które stanowią wasze ciało. Istnieje około tryliona komórek ludzkich, które stanowią każdego z nas, to kim jesteśmy i wszystko co jesteśmy w stanie robić, ale jednocześnie macie 10 trylionów komórek bakteryjnych w sobie lub na sobie w każdej chwili waszego życia. Zatem, dziesięć razy więcej komórek bakteryjnych niż ludzkich komórek w przeciętnym człowieku. No i oczywiście liczy się DNA, więc oto wszystkie A, T, G i C stanowiące wasz kod genetyczny i nadające wszystkim urocze cechy. Posiadacie ok. 30 000 genów. No cóż, okazuje się, że wewnątrz jak i na zewnątrz macie 100 razy więcej genów bakteryjnych, które odgrywają rolę przez całe wasze życie. W najlepszym wypadku jesteście ludźmi w 10 procentach chociaż bardziej prawdopodobny jest 1 procent w zależności od tego, które z wyliczeń wolicie. Wiem, że uważacie się za istoty ludzkie, ale ja myślę o was jak o 90 lub 99 procentowych bakteriach.
(Śmiech)
Bakterie te nie są biernymi bytami są niezwykle ważne, utrzymują nas przy życiu. Okrywają nasze ciała niewidzialnym pancerzem, który powstrzymuje zagrożenia środowiskowe i sprawia, ze jesteśmy zdrowi. Trawią nasze pożywienie, wytwarzają witaminy, tak naprawdę szkolą wasz system odpornościowy żeby nie dopuszczał złych mikrobów. Zatem wykonują wszystkie te niewiarygodne rzeczy które pomagają nam i są niezbędne żeby utrzymać nas przy życiu ale o tym nikt nie mówi. Za to mówi się dużo o okropnych rzeczach, które robią. A więc, na Ziemi istnieje wiele rodzajów bakterii, które nie zabiegają o to, by zawsze być w was lub na was, ale jeśli już są, to okropnie chorujecie.
A zatem, pytaniem dla mojego laboratorium jest czy wolicie myśleć o wszystkich dobrych rzeczach, które bakterie robią czy o wszystkich złych rzeczach, które bakterie robią. Naszym pytaniem było, jak one w ogóle mogą cokolwiek robić? Przecież są niewiarygodnie małe, musicie mieć mikroskop żeby je zobaczyć. Prowadzą to swoje niby nudne życie rosnąc i dzieląc się i od zawsze uważane są za organizmy asocjalne, żyjące w pojedynkę. I dlatego wydawało nam się, że są zbyt małe żeby mieć jakikolwiek wpływ na środowisko jeśli po prostu działają w pojedynkę. Dlatego chcieliśmy rozpatrzeć czy możliwy byłby inny tryb życia bakterii.
Wskazówką okazała się inna morska bakteria o nazwie Vibrio fischeri. To co widzicie na tym slajdzie to tylko mój laborant trzymający kolbę z ciekłą kulturą bakterii, pięknej, niegroźnej bakterii, która pochodzi z oceanu i nazywa się Vibrio fischeri. Ma ona tą szczególną właściwość, że wytwarza światło, więc wytwarza bioluminescencję, tak jak świetliki, robaczki świętojańskie. Nie ma tu naszej ingerencji. Po prostu wyłączyliśmy światło w pomieszczeniu, zrobiliśmy zdjęcie i oto co zobaczyliśmy.
Właściwie nie interesowało nas to, że bakterie wytwarzały światło, ale to, kiedy je wytwarzały. Zauważyliśmy, że kiedy bakterie były same, czyli, kiedy znajdowały się w rozcieńczonej zawiesinie, nie wytwarzały światła. Ale kiedy rozrosły się do pewnej liczby komórek wszystkie włączały światło jednocześnie. Dręczyło nas pytanie jak bakterie, te prymitywne organizmy, odróżniają sytuacje, w których są same, od tych, w których są w społeczności, a potem wszystkie robią coś razem. Doszliśmy do wniosku, że osiągają to rozmawiając między sobą za pomocą języka chemicznego.
Zatem mamy tu komórkę bakteryjną. Kiedy jest sama, nie wytwarza światła. Zamiast tego wytwarza i wydziela małe molekuły, które możecie potraktować jak hormony to te czerwone trójkąty, i kiedy bakteria jest sama molekuły po prostu odpływają i nie ma światła. Ale kiedy bakteria rośnie i dzieli się i wszystkie uczestniczą w wytwarzaniu molekuł, wówczas ilość tych molekuł poza komórką wzrasta w stosunku do liczby komórek bakterii. I kiedy molekuły osiągną pewną liczbę która mówi bakterii ilu ma „sąsiadów”, bakterie rozpoznają tą molekułę i wszystkie synchronicznie emitują światło. Tak działa bioluminescencja -- bakterie rozmawiają za pomocą tych chemicznych słów.
Powód, dla którego Vibrio fischeri to robi pochodzi z biologii. Kolejna reklama dla zwierząt oceanu, Vibrio Fischeri żyje w tej kałamarnicy Patrzycie na hawajską kałamarnicę Euprymna scolopes od spodu i mam nadzieję, że dostrzegacie te dwa świecące płaty które są domem dla komórek Vibrio fischeri, mieszkaja tam w dużych skupiskach komórek produkując te molekuły i wytwarzają światło. Kałamarnica toleruje tę błazenadę ponieważ potrzebuje tego światła. Oto jak funkcjonuje ta symbioza, ten mały kalmar żyje tuż u wybrzeży Hawajów, w płytkiej do kolan wodzie. Kalmar prowadzi tryb nocny więc w dzień zakopuje się w piachu i śpi, ale później, w nocy, musi wyjść żeby polować. Przy jasnych nocach duża ilość światła gwiazd i księżyca przenika do głębokości wody w której żyje kalmar, jako że jest to zaledwie parę stóp głębokości. Lecz kalmar rozwinął w sobie przesłonę, którą może otwierać i zamykać ten wyspecjalizowany organ światła z bakteriami. Poza tym, na plecach ma detektory wyczuwające ilość światła gwiazd i księżyca docierającego do jego pleców. A więc otwiera lub zamyka przesłonę tak aby ilość światła ze spodu -- wytwarzanego przez bakterie – idealnie odpowiadała ilości światła docierającego do pleców kałamarnicy tak aby nie rzucała cienia. Tak naprawdę, używając światła bakterii kalmar rozświetla się i broni przed atakami drapieżników, które przez to nie widzą jego cienia, nie mogą namierzyć jego trajektorii i zjeść go. Jest jak niewykrywalny bombowiec oceanu.
(Śmiech)
Gdyby się nad tym zastanowić, kałamarnica ma jednak okropny problem ponieważ przetrzymuje tą pokaźną, umierającą kolonię bakterii i nie może utrzymać tego stanu. Zatem, każdego ranka o wschodzie słońca kałamarnica idzie spać, zakopuje się w piasku i posiada pompkę zgraną z jego rytmem dobowym, i kiedy wschodzi słońce, wypompowuje jakieś 95 procent bakterii. W ten sposób bakterie są rozproszone, znikają małe molekuły hormonów więc nie wytwarzają światła -- ale oczywiście kałamarnica nie dba o to. Śpi w piasku. I w miarę upływu dnia bakterie dzielą się, uwalniają molekuły, a w nocy świecą dokładnie kiedy kałamarnica potrzebuje tego najbardziej.
Najpierw odkryliśmy jak ta bakteria to robi, ale potem użyliśmy narzędzi biologii molekularnej aby dokładnie poznać ten mechanizm. I okazało się – to znowu moja komórka bakterii -- że Vibrio fischeri ma proteinę -- to ten czerwony prostokąt – to enzym, który wytwarza ten malutki molekuł hormonu – czerwony trójkąt. Później, w miarę rozrastania się komórek, wszystkie uwalniają tą cząseczkę do środowiska więc jest ich tam mnóstwo. Bakterie mają także receptor na powierzchni komórki, który dopasowuje się z molekułami jak klucz z zamkiem. One są zupełnie jak receptory na powierzchni waszych komórek. Kiedy molekuły osiągają pewną ilość -- co świadczy o liczbie komórek -- dopasowują się do receptorów i przekazują komórkom informacje o tym żeby wspólnie zaczęły wytwarzać światło.
Jest to o tyle interesujące, że w ciągu ostatniej dekady odkryliśmy, że nie jest to tylko jakaś anomalia tej śmiesznej, świecącej w ciemności bakterii, która żyje w oceanie, lecz system wszystkich bakterii. Więc teraz już wiemy, że wszystkie bakterie komunikują się. Wytwarzają chemiczne słowa, rozpoznają je i uaktywniają grupowe zachowania, skuteczne tylko gdy wszystkie komórki biorą w nich jednolity udział. Mamy na to osobliwe określenie „quorum sensing” - mechanizm wyczuwania liczebności. Głosują za pomocą chemicznych głosów, które są liczone, a następnie wszyscy reagują zgodnie z wynikiem głosowania.
Co jest istotne dla dzisiejszych rozważań to fakt, iż wiemy, że istnieją setki typów zachowań bakterii, które są realizowane kolektywnie. Ale najważniejszym dla was zapewne jest wirulencja - złośliwość wirusów. To nie jest tak, że para bakterii dostaje się do was i zaczynają wydzielać jakieś toksyny -- jesteście olbrzymi, to nie miałoby wpływu na was. Jesteście ogromni. Wiemy już teraz, że to co robią, to: dostają się do was, czekają, zaczynają rozmnażać się, liczą się za pomocą tych małych molekuł i rozpoznają moment odpowiedniej liczby komórek, która mówi im, że jeśli wszystkie razem rozpoczną atak wirulencji to odniosą sukces w opanowaniu ogromnego żywiciela. Bakterie zawsze kontrolują patogeniczność wyczuwając ich liczebność. Tak to działa.
Później przyjrzeliśmy się także molekułom -- to były czerwone trójkąty na moich poprzednich slajdach. To jest cząsteczka Vibrio fischeri. To jest słowo, którym komunikuje się. Więc potem przyjrzeliśmy się innym bakteriom i to jest tylko szczypta molekuł, które odkryliśmy. Mam nadzieję, że widzicie, że molekuły są powiązane ze sobą. Lewa część molekuł jest identyczna dla wszystkich gatunków bakterii. Ale prawa część molekuł jest nieco inna dla każdego z gatunków. Jej zadaniem jest nadawać niepowtarzalne specyfikacje gatunków tym językom. Każda molekuła pasuje do receptora jej partnera i do żadnego innego. Więc są to prywatne, tajne rozmowy. Rozmowy służące komunikacji wewnątrzgatunkowej. Każda bakteria używa szczególnej molekuły, która jest jej językiem i umożliwia policzenie jej rodzeństwa.
Kiedy dotarliśmy tak daleko zaczęliśmy rozumieć, że bakterie mają swoje zachowania społeczne. Ale naprawdę intrygowało nas to, że większość czasu bakterie nie żyją w pojedynkę ale w niewiarygodnych mieszankach, z setkami tysięcy innych gatunków bakterii. I przedstawia to ten slajd. To jest wasza skóra. Więc to jest tylko zdjęcie – mikrogram waszej skóry. Każdy odcinek waszego ciała wygląda mniej więcej właśnie tak i mam nadzieję, że dostrzegacie tu różnorodność bakterii. Więc zaczęliśmy zastanawiać się czy rzeczywiście chodzi o komunikację bakterii i liczenie swoich sąsiadów, nie wystarczy umieć rozmawiać tylko ze swoim szczepem. Musi istnieć sposób pobierania informacji o liczbie pozostałych bakterii w populacji.
Więc wróciliśmy do biologii molekularnej i zaczęliśmy badać różne bakterie i odkryliśmy ostatnio, że bakterie są faktycznie wielojęzyczne. Wszystkie mają wyjątkowy dla każdego gatunku system -- posiadają molekułę, która mówi „ja”. Co więcej, równolegle do tego systemu mają drugi, który odkryliśmy, również gatunkowy Mają drugi enzym wysyłający grugi sygnał i posiadający własny receptor i ta molekuła to język handlowy bakterii. Jest on używany przez wszelkie bakterie i jest to język międzygatunkowy. Sprowadza się to do tego, że bakterie potrafią policzyć ilu jest „ja” i „ty” w otoczeniu. Gromadzą te informacje w sobie i decydują o zadaniu do wykonania biorąc pod uwagę to, kto jest w większości, a kto w mniejszości z danej populacji.
Wówczas powróciliśmy do chemii i rozszyfrowaliśmy czym jest ta gatunkowa molekuła -- te różowe owale na moim poprzednim slajdzie, oto one. To bardzo mała, pięcio-węglowa cząsteczka. Co istotne, wiemy, że każda bakteria ma dokładnie ten sam enzym i wytwarza dokładnie tą samą cząsteczkę. Wszystkie zatem używają tej molekuły do komunikacji międzygatunkowej. Takie bakteryjne Esperanto.
(Śmiech)
Gdy dotarliśmy tak daleko zaczęliśmy pojmować, że bakterie rozmawiają ze sobą za pomocą owego chemicznego języka . Ale równocześnie zaczęliśmy zastanawiać się czy można praktycznie wykorzystać tą wiedzę. Wspominałam wam, że bakterie mają różnorakie społeczne zachowania, które przekazują za pomocą molekuł. Oczywiście, wspomniałam również, że jedną z ważnych rzeczy jest to, że inicjują choroby używając mechanizmu wyczuwania liczebności (quorum sensing). Pomyśleliśmy, a gdyby tak „zatkać" bakteriom „usta” i „uszy”? Czyż nie byłyby to nowe antybiotyki?
Na pewno słyszeliście i wiecie już, że kończą się nam antybiotyki. Dzisiejsze bakterie są niewiarygodnie odporne na wszelkie leki a to dlatego, że wszystkie stosowane antybiotyki zabijają bakterie. Przebijają ich błonę albo sprawiają, że bakteria nie jest w stanie pomnażać swojego DNA. Zabijając bakterie tradycyjnymi antybiotykami wyłaniamy nowe odporne mutacje. Stąd też nasz obecny światowy problem z chorobami zakaźnymi. Pomyśleliśmy, a gdyby tak zmodyfikować ich zachowania sprawiając, że bakterie nie potrafiłyby rozmawiać i liczyć, i nie wiedziałyby czy atakować.
I tak właśnie zrobiliśmy, obierając przy tym dwie strategie. W pierwszej zaatakowaliśmy system komunikacji wewnątrzgatunkowej. Więc stworzyliśmy cząsteczki, które trochę przypominają te prawdziwe -- które już widzieliście- ale są nieco inne. A więc, dopasowują się do receptorów i blokują rozpoznawanie tych prawdziwych. Przez atak na czerwony system jesteśmy w stanie stworzyć molekuły blokujące proces wyczuwania liczebności dla danego gatunku lub choroby. To samo zrobiliśmy z systemem różowym. Wzięliśmy tą uniwersalną molekułę, przerobiliśmy trochę tworząc antagonistów systemu komunikacji międzygatunkowej. Mamy nadzieję, że wykorzystamy je w szerokim spektrum antybiotyków przeciwdziałających bakteriom.
Na zakończenie pokażę wam tą strategię. W tej, używam tylko wewnątrzgatunkowej molekuły, ale logika jest taka sama. Wiecie już, że kiedy bakteria dostaje się do zwierzęcia, w tym wypadku, do myszy, nie rozpoczyna wirulencji od razu. Dostaje się do środka, dzieli się, zaczyna wytwarzać molekuły do mechanizmu wyczuwania liczebności (quorum sensing). Rozpoznaje kiedy jest ich wystarczająco dużo żeby rozpocząć atak i zwierze umiera. My jesteśmy w stanie podać te złośliwe infekcje, ale równolegle z molekułami przeciwdziałającymi "quorum sensing" -- więc są to cząsteczki wyglądające trochę jak te prawdziwe a jednak trochę inne, co ilustruje ten slajd. Wiemy teraz, że jeśli podamy zwierzęciu bakterię chorobotwórczą – odporną na wszelkie leki -- i w tym samym czasie podamy nasze molekuły anty „quorum sensing” to faktycznie zwierze będzie żyć.
Wierzymy, że jest to kolejne pokolenie antybiotyków, które pozwoli nam obejść, przynajmniej na początku, ten duży problem odporności. Mam nadzieję, że przekonaliście się, że bakterie potrafią rozmawiać ze sobą, używając substancji chemicznych jako języka, posiadają niewiarygodnie skomplikowany leksykon chemiczny, który dopiero poznajemy. Oczywiście daje to bakteriom możliwość bycia wielocząsteczkowymi. Więc podobnie do przesłania TED, działają razem bo tylko tak można coś zmienić. Chodzi o to, że bakterie mają swoje zachowania zbiorowe i wykonują w ten sposób zadania, których nie ukończyłyby nigdy gdyby działały w pojedynkę.
Mam nadzieję, że udało mi się udowodnić wam, że jest to wynalazek wielocząsteczkowości. Bakterie są na Ziemi od miliardów lat. Ludzie – zaledwie paręset tysięcy. Uważamy, że to bakterie wyznaczyły zasady działania organizacji wielocząsteczkowej. Wierzymy, że przez badanie bakterii, będziemy w stanie lepiej poznać wielocząsteczkowy wymiar ludzkiego ciała. Wiemy, że jeśli poznamy prawa i zasady tych prymitywnych organizmów to istnieje szansa, że będą one miały zastosowanie także przy innych ludzkich chorobach i zachowaniach. Mam nadzieję, że nauczyliście się, że bakterie potrafią odróżniać siebie od innych. Używając tych dwóch molekuł mogą powiedzieć „ja” i „ty”. I znowu, my oczywiście też to robimy, zarówno molekularnie jak i zewnętrznie, ale ja skupiam się na molekularności.
To właśnie dzieje się w waszych ciałach. To nie jest tak, że komórki serca i nerek mieszają się codziennie, a to z powodu wszystkich zachodzących reakcji chemicznych i molekuł, które mówią im która grupa komórek jest która i jakie jest ich zadanie. Raz jeszcze podkreślę, uważamy, że stworzyły to bakterie, a nasze ciała rozwinęły tylko kilka dodatkowych trybików, ale całe meritum tkwi w tych prostych systemach, które możemy badać.
Końcowym wnioskiem jest to by stale powtarzać, że istnieje praktyczna strona i dlatego stworzyliśmy te molekuły anty “quorum sensing”, które są rozwijane jako nowe środki terapeutyczne. Ale żeby zakończyć reklamą dla wszystkich pożytecznych i cudownych bakterii żyjących na Ziemi stworzyliśmy także molekuły pro „quorum sensing”. A więc dobraliśmy się do systemów usprawniających pracę molekuł. Pamiętajcie, że macie na sobie lub w sobie 10 razy więcej komórek bakterii, utrzymujących wasze zdrowie. Staramy się także wzmocnić rozmowy bakterii, które żyją w symbiozie z wami, mając nadzieję, że dzięki temu będziecie zdrowsi, jeśli ich rozmowy będą lepsze, tak żeby bakterie mogły robić to co chcemy żeby robiły lepiej niż w pojedynkę.
Wreszcie, chciałam pokazać wam moją bandę w Princeton w New Jersey. Wszystko o czym wam opowiedziałam zostało odkryte przez kogoś z tego zdjęcia. Mam nadzieję, że kiedy uczycie się, na przykład jak działa świat naturalny -- chcę tylko powiedzieć, że za każdym razem kiedy czytacie gazetę lub słyszycie jak ktoś mówi coś niezwykłego na temat świata natury to stoi za tym dziecko. Nauka jest tworzona przez to pokolenie. Wszyscy ci ludzie są między 20 a 30 rokiem życia i są siłą napędową odkryć naukowych w tym kraju. To naprawdę szczęście pracować z tym pokoleniem. Ja starzeję się a oni ciągle są w tym samym wieku i jest to zachwycająco zwariowana robota. Chciałabym podziękować wam za zaproszenie tu. To prawdziwa przyjemność dla mnie, móc przyjechać na tą konferencję.
(Oklaski)
Dzięki.
(Oklaski)
W
Brak komentarzy:
Prześlij komentarz